EditorRigel Raimarda. Pertidaksamaan nilai mutlak linear satu variabel merupakan suatu pertidaksamaan nilai mutlak yang hanya menggunakan satu variabel (biasanya variabel x). Penyelesaian pertidaksamaan nilai mutlak linear satu variabel memiliki sifat yang berbeda-beda, salah satunya tergantung dari tanda pertidaksamaannya. Soalpilihan ganda pertidaksamaan linear dua variabel kelas 10. 5 a + 2 b = 26.000 dan 4 a + 3 b = 38.000. Persamaan yang kedua yaitu : Contoh spldv dengan variabel dan : Pada 3x + 2y = 24, maka. PersamaanLinear Satu Variabel Tidak ada data tersedia Pembahasan materi Review Persamaan dan Pertidaksamaan dari Matematika Wajib untuk SD, SMP, SMA, dan Gap Year beserta contoh soal latihan dan video pembahasan terlengkap. Dα»‹ch Vα»₯ Hα»— Trợ Vay Tiền Nhanh 1s. Hai Quipperian, saat di SD kamu sudah pernah belajar tentang tanda lebih kecil dari β€œβ€, kan? Misalnya, 3 2. Nah, di SMP kamu akan bertemu kembali tanda lebih kecil atau lebih besar dari tersebut dalam bentuk pertidaksamaan, lho. Lebih tepatnya, pertidaksamaan linear satu variabel. Lalu, apa yang dimaksud pertidaksamaan linear satu variabel itu? Yuk, simak selengkapnya! Pengertian Pertidaksamaan Linear Satu Variabel Pertidaksamaan linear satu variabel adalah pertidaksamaan yang hanya memuat satu variabel saya, misalnya variabel x. Jika suatu persamaan ditandai dengan sama dengan β€œ=”, maka pertidaksamaan ditandai dengan β€œβ€, β€œβ‰€β€, β€œβ‰₯”. Pernyataan berikut ini merupakan contoh penerapan pertidaksamaan linear satu variabel. β€œSiswa dikatakan lulus jika mendapatkan nilai sekurang-kurangnya 70”. Jika ditulis secara matematis, menjadi x β‰₯ 70. Artinya, nilai minimal yang harus dicapai siswa untuk lulus adalah 70. Bentuk Umum Pertidaksamaan Linear Satu Variabel Pertidaksamaan linear satu variabel memiliki bentuk umum seperti berikut. ax + b ”, β€œβ‰€β€ atau β€œβ‰₯” Keterangan a = koefisien x; x = variabel; dan b, c = konstanta. Sifat-Sifat Pertidaksamaan Linear Satu Variabel Adapun sifat-sifat pertidaksamaan linear satu variabel adalah sebagai berikut. Tanda Pertidaksamaan Tidak Berubah dengan Operasi Penjumlahan dan Pengurangan Untuk menyelesaikan pertidaksamaan linear satu variabel, terkadang kamu harus melakukan operasi penjumlahan atau pengurangan pada kedua ruas dengan suku yang sama. Operasi semacam ini tidak akan mengubah tanda pertidaksamaan, ya. Perhatikan contoh berikut. 2x + 3 > 4 kedua ruas dikurangi 3 2x + 3 – 3 > 4 – 3 2x > 1 x > Β½ Lalu, mengapa harus dilakukan pengurangan atau penjumlahan kedua ruas dengan bilangan yang sama? Langkah itu bertujuan untuk membentuk pertidaksamaan yang ekuivalen dan sederhana. Tanda Pertidaksamaan Tidak Berubah dengan Operasi Perkalian Bilangan Positif Jika suatu pertidaksamaan linear satu variabel dikalikan dengan bilangan positif yang sama di kedua ruasnya, maka tanda pertidaksamaannya juga tidak akan berubah. Perhatikan contoh berikut. 15x ”, β€œ>” menjadi β€œ<”, β€œβ‰€β€ menjadi β€œβ‰₯”, β€œβ‰₯” menjadi β€œβ‰€β€. Perhatikan contoh berikut. -2x + 3≀ 5 kedua ruas dikurangi 3 -2x + 3 – 3 ≀ 5 – 3 -2x ≀ 2 kedua ruas dikali -12 -2x Γ— -12≀ 2 Γ— -12 x β‰₯ -1 tanda berubah dari β€œβ‰€β€ menjadi β€œβ‰₯” Contoh Pertidaksamaan Linear Satu Variabel Jika mengacu pada pembahasan di atas, pertidaksamaan linear satu variabel memiliki bentuk yang mudah untuk disederhanakan. Perhatikan contoh berikut. Tentukan himpunan x yang memenuhi pertidaksamaan tersebut! Pembahasan Mula-mula, selesaikan dahulu perkalian aljabar di ruas kiri seperti berikut. Lalu, pindah x dari ruas kanan ke ruas kiri dan 3 dari ruas kiri ke ruas kanan. Di soal tertulis bahwa x termasuk anggota himpunan bilangan asli. Dengan demikian, nilai x yang memenuhi adalah himpunan bilangan asli itu sendiri yang dimulai dari 1, 2, 3, dan seterusnya. Jadi, himpunan x yang memenuhi pertidaksamaan tersebut adalah himpunan bilangan asli. Contoh Soal Untuk mengasah pemahamanmu tentang pertidaksamaan linear satu variabel, yuk simak beberapa contoh soal berikut. Contoh Soal 1 Heru memiliki 100 butir kelereng dan Roni memiliki 150 butir kelereng. Oleh karena suatu hal, keduanya memberikan kelereng-kelereng tersebut pada Kiki dengan jumlah yang sama. Jika sisa kelereng yang dimiliki Roni sekurang-kurangnya dua kali sisa kelereng Heru, berapakah total kelereng maksimal yang diterima Kiki? Pembahasan Mula-mula, kamu harus mengubah soal tersebut dalam bentuk pertidaksamaan linear satu variabel. Misal, jumlah kelereng yang diberikan pada Kiki = x, sehingga Jumlah kelereng Roni – x ≀ 2 Jumlah kelereng Heru – x 150 – x ≀ 2 100 – x 150 – x ≀ 200 – 2x –x + 2x ≀ 200 – 150 x ≀ 50 Artinya, jumlah kelereng maksimal yang diberikan Heru dan Roni pada Kiki adalah 50. Jadi, total kelereng maksimal yang diterima Kiki adalah 50 + 50 = 100. Contoh Soal 2 Ibu memiliki 30 buah mangga. Mangga-mangga tersebut akan dibagikan pada rekan arisannya. Jika 5 rekan arisan ibu mendapatkan masing-masing 2 mangga dan rekan lainnya mendapatkan 4 mangga, maka masih ada mangga yang tersisa. Namun, jika hanya ada 2 rekan arisan yang mendapatkan masing-masing 2 mangga dan rekan arisan lain mendapatkan 4 mangga, maka mangganya tidak cukup. Tentukan banyaknya rekan arisan ibu! Pembahasan Dari soal ada dua kondisi, ya. Kondisi pertama Ibu membagikan masing-masing 2 mangga pada 5 rekan arisannya. Lalu, rekan arisan lainnya diberi 4 mangga. Ternyata, mangganya masih tersisa. Jika dinyatakan secara matematis, menjadi Misal banyak rekan arisan ibu = x, maka Kondisi kedua Ibu membagikan masing-masing 2 mangga pada 2 rekan arisannya. Lalu, rekan arisan lainnya diberi 4 mangga. Ternyata, mangganya masih kurang atau tidak cukup. Jika dinyatakan secara matematis, menjadi Misal banyak rekan arisan ibu = x, maka Selanjutnya, selesaikan pertidaksamaan 1 dan 2. Tentukan nilai x yang memenuhi kedua pertidaksamaan. Solusi x pada persamaan 1 Solusi x pada persamaan 2 Dari solusi kedua pertidaksamaan diperoleh nilai x yang memenuhi berada di intervak 8 < x < 10, yaitu 9. Jadi, jumlah rekan arisan ibu adalah 9. Contoh Soal 3 Tentukan nilai x yang memenuhi pertidaksamaan berikut. Pembahasan Mula-mula, kurangkan kedua ruas dengan 5. Lalu, pindahkan 14x ke ruas kiri. Selanjutnya, kalikan kedua ruas dengan 4. Jadi, nilai x yang memenuhi adalah x β‰₯ -24. Itulah pembahasan Quipper Blog kali ini. Semoga bermanfaat, ya. Untuk mendapatkan materi lengkapnya, yuk buruan gabung Quipper Video. Salam Quipper! ο»ΏSoal persamaan linear satu variabel merupakan salah satu bentuk soal yang paling sering ditemukan dalam pelajaran matematika kelas 10 SMA. Soal ini bertujuan untuk membantu siswa memahami konsep persamaan linear satu variabel dengan lebih baik. Dalam soal ini, siswa diminta untuk menyelesaikan persamaan linear satu variabel dengan menggunakan teknik-teknik yang telah dipelajari. Persamaan linear satu variabel adalah persamaan yang hanya mengandung satu variabel, yaitu x. Biasanya, persamaan ini dapat ditulis dalam bentuk ax + b = 0, di mana a dan b adalah bilangan real. Soal-soal ini seringkali mengajarkan tentang cara menyelesaikan persamaan linear satu variabel dan cara menggunakan persamaan ini untuk menyelesaikan masalah matematika. Konsep Dasar Persamaan Linear Satu Variabel Untuk memahami soal persamaan linear satu variabel, siswa harus memahami konsep dasar persamaan linear satu variabel terlebih dahulu. Konsep dasarnya adalah bahwa persamaan linear satu variabel adalah persamaan yang hanya mengandung satu variabel, yaitu x. Seringkali, persamaan ini ditulis dalam bentuk ax + b = 0, di mana a dan b adalah bilangan real. Untuk menyelesaikan persamaan ini, siswa harus memecahkan persamaan linear satu variabel tersebut menjadi dua bagian. Bagian pertama adalah ax = -b, di mana a dan b adalah bilangan real. Bagian kedua adalah x = -b/a, di mana a dan b adalah bilangan real. Cara Menyelesaikan Soal Persamaan Linear Satu Variabel Untuk menyelesaikan soal persamaan linear satu variabel, siswa harus dapat menggunakan teknik-teknik yang sudah dipelajari. Pertama, siswa harus memecahkan persamaan linear satu variabel menjadi dua bagian. Bagian pertama adalah ax = -b, di mana a dan b adalah bilangan real. Bagian kedua adalah x = -b/a, di mana a dan b adalah bilangan real. Setelah itu, siswa dapat menggunakan teknik-teknik seperti pengelompokan, faktorisasi, dan penyederhanaan untuk menyelesaikan soal. Soal persamaan linear satu variabel kelas 10 biasanya ditanyakan dalam bentuk yang berbeda. Namun, umumnya soal-soal ini membutuhkan siswa untuk menyelesaikan persamaan linear satu variabel dengan menggunakan teknik yang telah dipelajari. Beberapa soal yang mungkin ditanyakan pada kelas 10 adalah sebagai berikut Selesaikan persamaan linear satu variabel 3x + 7 = 10. Selesaikan persamaan linear satu variabel 5x – 4 = 16. Selesaikan persamaan linear satu variabel 7x + 5 = 22. Selesaikan persamaan linear satu variabel 8x – 9 = 15. Untuk menyelesaikan soal-soal di atas, siswa harus dapat menggunakan teknik-teknik seperti pengelompokan, faktorisasi, dan penyederhanaan. Dengan menggunakan teknik-teknik tersebut, siswa dapat dengan mudah menyelesaikan soal-soal tersebut. Contoh Soal Persamaan Linear Satu Variabel Berikut ini adalah contoh soal persamaan linear satu variabel kelas 10 Selesaikan persamaan linear satu variabel x + 9 = 15. Selesaikan persamaan linear satu variabel 3x – 7 = 16. Selesaikan persamaan linear satu variabel 2x + 5 = 11. Selesaikan persamaan linear satu variabel 10x – 13 = 17. Untuk menyelesaikan soal-soal di atas, siswa harus dapat menggunakan teknik-teknik seperti pengelompokan, faktorisasi, dan penyederhanaan. Dengan menggunakan teknik-teknik tersebut, siswa dapat dengan mudah menyelesaikan soal-soal tersebut. Kesimpulan Soal persamaan linear satu variabel kelas 10 adalah soal yang bertujuan untuk membantu siswa memahami konsep persamaan linear satu variabel dengan lebih baik. Soal-soal yang ditanyakan biasanya membutuhkan siswa untuk menyelesaikan persamaan linear satu variabel dengan menggunakan teknik-teknik yang telah dipelajari. Dengan memahami konsep dasar persamaan linear satu variabel dan cara menyelesaikannya, siswa dapat dengan mudah menyelesaikan soal-soal tersebut. Hai sobat, bagaimana kabarmu hari ini? semoga sehat selalu dan tetap semangat belajar ya! Oh ya, pada kesempatan kali ini kita akan belajar materi yang menarik loh, yaitu β€œMengenal konsep dasar dan rumus umum pada Persamaan Linear Satu Variabel PLSV”. Perlu sobat ketahui bahwa Konsep PLSV banyak diterapkan pada soal-soal aplikasi matematika di kehidupan sehari-hari, disamping itu konsep ini juga digunakan sebagai syarat untuk memahami konsep persamaan linear satu variabel, persamaan linear dua variabel , persamaan linear tiga variabel, dan pertidaksamaan nilai mutlak. Sehingga konsep ini perlu sobat kuasai dengan baik. Yuk kita simak .. Persamaan Linear Satu Variabel PLSV yaitu sebuah kalimat terbuka yang dihubungkan menggunakan tanda ” = ” dan hanya mempunyai variabel berpangkat 1. Bentuk umum dari PLSV yakni ax + b = 0. Contonya; x + 5 = 83a + 2 = 11y – 4 = 6 Untuk mempermudah dalam memahami Persamaan linear satu variabel maka kita perlu mengenal terlebih dahulu elemen-elemennya seperti kalimat terbuka , variabel, konstanta dan himpunan penyelesaian . Kalimat terbuka yaitu suatu kalimat yang belum bisa dipastikan kebenarannya, Variabel atau peubah yaitu lambang simbol pada kalimat terbuka yang bisa diganti dengan sembarang anggota himpunan yang telah ditentukan, konstanta yaitu lambang yang menyatakan suatu bilangan tertentu, adapun himpunan penyelesaian yaitu himpunan pengganti dari semua variabel-variabel kalimat terbuka sehingga menjadikan kalimat tersebut menjadi benar. Contohnya; x + 4 = 911 – y = 89z – 3 = 15 Pada bagian 1. x + 4 = 9 disebut kalimat terbuka, nilai x disebut variabel, sedangkan 4 dan 9 disebut dengan konstanta. Himpunan penyelesaiannya adalah x = 5 Pada bagian 2. 11 – y = 8 disebut dengan kalimat terbuka, nilai y disebut dengan variabel, sedangkan 11 dan 8 disebut dengan konstanta. Himpunan penyelesaiannya adalah y = 3 Pada bagian 3. 9z – 3 = 15 disebut dengan kalimat terbuka, nilai z disebut dengan variabel, sedangkan – 3 dan 15 disebut dengan konstanta. Himpunan penyelesaiannya adalah z = 2. Kesetaraan Bentuk Pada PLSV Dua persamaan ataupun lebih dapat dikatakan setara atau equivalen apabila mempunyai himpunan penyelesaian yang sama, dan dinotasikan menggunakan simbol β€œ ↔ β€œ. Syarat suatu persamaan agar dapat dinyatakan sebagai persamaan yang setara yakni; Menambahkan atau mengurangi dikedua ruas menggunakan bilangan yang sama,Mengalikan atau membagi dikedua ruas menggunakan bilangan yang sama Contoh Soalnya; 1. Tentukanlah nilai x – 4 = 3 penyelesaiannya; Apabila nilai x diganti dengan 7 maka nilai dari 7 – 4 = 3 {benar} sesuai dengan syarat 1 jadi penyelesaian dari persamaan x – 4 = 3 adalah x = 7 2. Tentukanlah nilai 2x – 8 = 12 penyelesaiannya; 2x – 8 = 12 2x = 12 + 8 syarat 1 2x = 20 x = 20/2 x = 10 Nilai x diganti dengan 10 supaya kedua persamaan setara sehingga; 210 – 8 = 12 12 = 12 jadi penyelesaian dari persamaan 2x – 8 = 12 yaitu x = 10 3. Tentukanlah nilai x + 8 =14 penyelesaiannya; x + 8 = 14 x = 14 – 8 syarat 1 x = 6 jadi, penyelesaiannya yaitu x = 6 Penyelesaian Soal PLSV Untuk Menyelesaikan soal Persamaan Linear Satu Variabel PLSV dapat dilakukan dengan menggunakan metode substitusi. Metode substitusi yaitu menggantikan variabel menggunakan bilangan yang sesuai, sehingga persamaan tersebut menjadi kalimat yang bernilai benar. Contoh Soal; Tentukanlah himpunan penyelesaian pada persamaan y + 6 = 10, jika nilai variabel y merupakan bilangan asli. Pembahasannya; Kita gantikan variabel y dengan nilai y = 4 di substitusikan, tenyata persamaan y + 6 = 10 menjadi kalimat terbuka yang bernilai benar. Jadi Himpunan penyelesaian dari persamaan y + 6 = 10 yaitu {4} Adapun langkah – langakah dari metode substitusi diantaranya; Mengelompokkan suku yang sejenis,Apabila dijumpai suku sejenis pada ruas yang berbeda, maka dipindahkan supaya menjadi satu ruas,Apabila dipindahkan ruasnya, maka tanda + positif berubah menjadi – negatif dan berlaku juga variabel hingga = konstanta yang menjadi penyelesaiannya. Contoh Soal; Tentukanlah Himpunan penyelesaian dari persamaan 7x – 6 = 6x + 4 7x – 6 = 6x + 4 7x – 6 + 6 = 6x + 6 + 4 kedua ruas ditambah 6 7X = 6x + 10 7x – 6x = 10 kelompokkan suku sejenis x =10 Jadi, Himpunan penyelesaiannya yaitu x = 10 Model Matematika PLSV Pengaplikasian PLSV bisa dengan mudah ditemukan dikehidupan sehari -hari, misalnya untuk menentukan bilangan yang belum diketahui, menghitung luas dan keliling tanah, menentukan hasil suatu panen, menghitung harga jual suatu kendaraan, menentukan jumlah paket pada jasa pengiriman, dan lain sebagainya. Untuk menyelesaikan Soal PLSV umumnya diselesaikan dengan membuat sebuah model matematika. Penggunaan model matematika ini contohnya memisalkan suatu informasi yang belum diketahui dengan sebuah varabel tertentu. Berikut ini merupakan contoh Soal Aplikasi PLSV 1. Diketahui dua buah bilangan mempunyai selisih 7, dan jika dijumlahkan sebanyak 31. Tentukanlah model matematika, dan tentukan kedua bilangan tersebut! Pembahasan; Model matematikanya yakni; Bilangan I = x Bilangan II = x + 7 Penyelesaian dari model matematika diatas yakni; x + x + 7= 31 2x + 7 = 31 2x = 31 – 7 2x = 24 x = 24/2 x = 12 jadi, Bilangan I = 12 , dan Bilangan II = 12 + 7 = 19 2. Seorang petani memiliki tanah yang bentuknya persegi panjang, adapun lebarnya adalah 6 m lebih pendek dari panjangnya, Jika diketahui kelilingnya adalah 60 m, Tentukanlah model matematika dan luas tanah petani tersebut! Pembahasan; Jika panjang tanah dimisalkan dengan x, sedangkan lebarnya adalah x – 6, maka model matematikanya yaitu; P = x, L = x – 6 Penyelesaian dari model matematika diatas yakni; K = 2 p + l 60 = 2 x + x – 6 60 = 2 2x -6 60 = 4x – 12 60 + 12 = 4x 72 = 4x 72/4 = x x = 18 Jadi, luas tanah petani tersebut yaitu; L = p x l L = x x – 6 L = 18 18 – 6 L = 18 x 12 L = 216 cm2 Contoh Soal PLSV dan Pembahasannya Setelah mengenal konsep dan metode Penyelesaian pada sistem persamaan linear satu variabel PLSV, Rasanya kurang lengkap jika belum berlatih soal-soal yang berkaitan dengan PLSV. Untuk itu simaklah contoh soal berikut, supaya pemahaman sobat semakin bertambah. Yuk simak… 1. Contoh Soal Kesetaraan PLSV Penyelesaiannya; Dengan menyelesaikan langkah-langkah penyelesaian persamaan linear satu variabel, maka diperoleh; 2. Contoh Soal Aplikasi PLSV untuk menentukan jumlah hasil panen Sebuah perkebunan jeruk menghasilkan jumlah panen pada bulan ke t atau Bt sebanyak 80t + 75kg. Apabila didapati hasil panen dengan jumlah 1,275 ton, pada bulan berapakah jumlah 1,275 ton terjadi? Penyelesaiannya; Diketahui; B t = 80t + 75kg B t = 1,275 ton atau 1275 kg karena B t = 80t + 75kg, dan B t = 1275 kg , maka; Jadi, jumlah panen kebun jeruk tersebut sebanyak 1,275 ton akan terjadi pada bulan ke 15. Bagaimana sobat, sudah mulai paham mengenai persamaan linear satu variabel? untuk lebih menguasainya materi PLSV, jangan lupa untuk terus berlatih ya… Demikian sedikit materi yang dapat kami bagikan, semoga bermanfaat bagi sobat sekalian, dan sampai berjumpa kembali pada kesempatan yang lain.. πŸ™‚ πŸ™‚ πŸ˜‰

soal persamaan linear satu variabel kelas 10